Chemistry is a physical science

 




Chemistry is typically considered a physical science, as defined by the Encyclopedia Britannica, because the study of chemistry does not involve living things. Most of the chemistry involved in research and development, such as making new products and materials for customers, falls within this purview.

But the distinction as a physical science becomes a bit blurry in the case of biochemistry, which explores the chemistry of living things, according to the Biochemical Society. The chemicals and chemical processes studied by biochemists are not technically considered "living," but understanding them is important to understanding how life works.


The five main branches of chemistry

Traditionally, chemistry is broken into five main branches, according to the online chemistry textbook published by LibreText. There are also more specialized fields, such as food chemistry, environmental chemistry and nuclear chemistry, but this section focuses on chemistry's five major subdisciplines.

Analytical chemistry involves the analysis of chemicals, and includes qualitative methods like looking at color changes, as well as quantitative methods like examining the exact wavelength(s) of light that a chemical absorbed to result in that color change. 


These methods enable scientists to characterize many different properties of chemicals, and can benefit society in a number of ways. For example, analytical chemistry helps food companies make tastier frozen dinners by detecting how chemicals in food change when they are frozen over time. Analytical chemistry is also used to monitor the health of the environment by measuring chemicals in water or soil, for example.

Biochemistry, as mentioned above, uses chemistry techniques to understand how biological systems work at a chemical level. Thanks to biochemistry, researchers have been able to map out the human genome, understand what different proteins do in the body and develop cures for many diseases.


Inorganic chemistry studies the chemical compounds in inorganic, or non-living things such as minerals and metals. Traditionally, inorganic chemistry considers compounds that do not contain carbon (which are covered by organic chemistry), but this definition is not completely accurate, according to the ACS

Some compounds studied in inorganic chemistry, like "organometallic compounds," contain metals, which are metals that are attached to carbon — the main element that's studied in organic chemistry. As such, compounds such as these are considered part of both fields. 

Inorganic chemistry is used to create a variety of products, including paints, fertilizers and sunscreens. 

Organic chemistry deals with chemical compounds that contain carbon, an element considered essential to life. Organic chemists study the composition, structure, properties and reactions of such compounds, which along with carbon, contain other non-carbon elements such as hydrogen, sulfur and silicon. Organic chemistry is used in many applications, as described by the ACS, such as biotechnology, the petroleum industry, pharmaceuticals and plastics.


Physical chemistry uses concepts from physics to understand how chemistry works. For example, figuring out how atoms move and interact with each other, or why some liquids, including water, turn into vapor at high temperatures. Physical chemists try to understand these phenomena at a very small scale — on the level of atoms and molecules — to derive conclusions about how chemical reactions work and what gives specific materials their own unique properties.

This type of research helps inform other branches of chemistry and is important for product development, according to the ACS. For example, physical chemists may study how certain materials, such as plastic, may react with chemicals the material is designed to come in contact with. 


Post a Comment

0 Comments